utils
          OptimizerFactory
  Factory for creating optimizers and schedulers.
After initialization, the factory can be called to create an optimizer with an optional scheduler.
          __call__(parameters)
  Create an optimizer with an optional scheduler for the given parameters.
The object returned by this method is a lightning optimizer config and can be
the return value of configure_optimizers.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
parameters | 
          
                Iterable[Parameter]
           | 
          
             The model parameters to optimize.  | 
          required | 
Returns:
| Type | Description | 
|---|---|
                OptimizerLRSchedulerConfig
           | 
          
             A lightning optimizer config.  | 
        
          __init__(optim_type='adam', lr=0.001, scheduler_type=None, **kwargs)
  Create a new factory to efficiently create optimizers and schedulers.
The factory creates an optimizer of the specified optim_type and adds an
optional scheduler of the specified scheduler_type. Additional keyword
arguments for the optimizer can be passed by adding the 'optim_' prefix and
for the scheduler by adding the 'scheduler_' prefix. The factory will ignore
any other keyword arguments.
Available optimizers are 'adam', 'sgd' and 'rmsprop'. Available schedulers are 'step', 'cosine', 'linear' and 'lambda'.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
optim_type | 
          
                str
           | 
          
             The type of optimizer to create.  | 
          
                'adam'
           | 
        
lr | 
          
                float
           | 
          
             The learning rate to use.  | 
          
                0.001
           | 
        
scheduler_type | 
          
                Optional[str]
           | 
          
             The optional type of scheduler to create.  | 
          
                None
           | 
        
**kwargs | 
          
                Any
           | 
          
             Additional keyword arguments for the optimizer and scheduler.  | 
          
                {}
           | 
        
          get_loss(loss_type)
  Get a loss instance by specifying a string.
          pairwise(iterable)
  s -> (s0,s1), (s1,s2), (s2, s3), ...
          str2callable(cls, restriction='')
  Dynamically import a callable from a string.