functional
get_lstm_dann(source_fd, target_fd, **trainer_kwargs)
Construct an LSTM-DANN approach for CMAPSS with the original hyperparameters.
Examples:
>>> import rul_adapt
>>> dm, dann, trainer = rul_adapt.construct.get_lstm_dann(3, 1)
>>> trainer.fit(dann, dm)
>>> trainer.test(dann, dm)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source_fd |
int
|
The source FD of CMAPSS. |
required |
target_fd |
int
|
The target FD of CMAPSS. |
required |
trainer_kwargs |
Any
|
Overrides for the trainer class. |
{}
|
Returns: dm: The data module for adaption of two CMAPSS sub-datasets. dann: The DANN approach with feature extractor, regressor and domain disc. trainer: The trainer object.
get_lstm_dann_config(source_fd, target_fd)
Get a configuration for the LSTM-DANN approach.
The configuration can be modified and fed to lstm_dann_from_config to create the approach.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source_fd |
int
|
The source FD of CMAPSS. |
required |
target_fd |
int
|
The target FD of CMAPSS. |
required |
Returns: The LSTM-DANN configuration.
lstm_dann_from_config(config, **trainer_kwargs)
Construct a LSTM-DANN approach from a configuration.
The configuration can be created by calling get_lstm_dann_config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
DictConfig
|
The LSTM-DANN configuration. |
required |
trainer_kwargs |
Any
|
Overrides for the trainer class. |
{}
|
Returns: dm: The data module for adaption of two CMAPSS sub-datasets. dann: The DANN approach with feature extractor, regressor and domain disc. trainer: The trainer object.