functional
get_latent_align(dataset, source_fd, target_fd, xjtu_sy_subtask=None, **trainer_kwargs)
Construct a Latent Alignment approach for the selected dataset with the original hyperparameters.
For the XJTU-SY task only FD001 and FD002 are available. The subtask controls if the bearing with the id 1 or 2 is used as the target data.
Examples:
>>> import rul_adapt
>>> dm, latent, trainer = rul_adapt.construct.get_latent_align("cmapss", 3, 1)
>>> trainer.fit(latent, dm)
>>> trainer.test(latent, dm)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Literal['cmapss', 'xjtu-sy']
|
The dataset to use. |
required |
source_fd |
int
|
The source FD. |
required |
target_fd |
int
|
The target FD. |
required |
xjtu_sy_subtask |
Optional[int]
|
The subtask for the XJTU-SY (either 1 or 2). |
None
|
trainer_kwargs |
Any
|
Overrides for the trainer class. |
{}
|
Returns: dm: The data module for adaption of the sub-datasets. dann: The Latent Alignment approach with feature extractor and regressor. trainer: The trainer object.
get_latent_align_config(dataset, source_fd, target_fd, xjtu_sy_subtask=None)
Get a configuration for the Latent Alignment approach.
For the XJTU-SY task only FD001 and FD002 are available. The subtask controls if the bearing with the id 1 or 2 is used as the target data. The configuration can be modified and fed to latent_align_from_config to create the approach.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Literal['cmapss', 'xjtu-sy']
|
The dataset to use. |
required |
source_fd |
int
|
The source FD. |
required |
target_fd |
int
|
The target FD. |
required |
xjtu_sy_subtask |
Optional[int]
|
The subtask for the XJTU-SY (either 1 or 2). |
None
|
Returns: The Latent Alignment configuration.
latent_align_from_config(config, **trainer_kwargs)
Construct a Latent Alignment approach from a configuration.
The configuration can be created by calling get_latent_align_config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
DictConfig
|
The Latent Alignment configuration. |
required |
trainer_kwargs |
Any
|
Overrides for the trainer class. |
{}
|
Returns: dm: The data module for adaption of the sub-datasets. dann: The Latent Alignment approach with feature extractor, regressor. trainer: The trainer object.